Zaytsev's rule

In organic chemistry, Zaytsev's rule (or Zaitsev's rule, Saytzeff's rule, Saytzev's rule) is an empirical rule for predicting the favored alkene product(s) in elimination reactions. While at the University of Kazan, Russian chemist Alexander Zaytsev studied a variety of different elimination reactions and observed a general trend in the resulting alkenes. Based on this trend, Zaytsev proposed that the alkene formed in greatest amount is that which corresponded to removal of the hydrogen from the alpha-carbon having the fewest hydrogen substituents. For example, when 2-iodobutane is treated with alcoholic potassium hydroxide (KOH), but-2-ene is the major product and but-1-ene is the minor product.[1]

A general example of Zaytsev's rule.

More generally, Zaytsev's rule predicts that in an elimination reaction the most substituted product will be the most stable, and therefore the most favored. The rule makes no generalizations about the stereochemistry of the newly formed alkene, but only the regiochemistry of the elimination reaction. While effective at predicting the favored product for many elimination reactions, Zaytsev's rule is subject to many exceptions. Many of them include exceptions under Hofmann product (analogous to Zaytsev product). These include compounds having quaternary nitrogen and leaving groups like NR3+, SO3H, etc. In these eliminations the Hofmann product is preferred. In case the leaving group is halogens, except fluorine; others give the Zaytsev product.[clarification needed]

  1. ^ Lehman, John (2009). Operational Organic Chemistry (4th ed.). Upper Saddle River, NJ: Pearson Education. p. 182. ISBN 978-0136000921.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy